"; */ ?>

clojure


22
Oct 13

Limited Async

An executor service (a.k.a. smart pool of threads) that is backed by a LimitedQueue.

The purpose of this tiny library is to be able to block on “.submit” whenever the q task limit is reached. Here is why..

Why


If a regular BlockingQueue is used, a ThreadPoolExecutor calls queue’s “offer” method which does not block: inserts a task and returns true, or returns false in case a queue is “capacity-restricted” and its capacity was reached.

While this behavior is useful, there are cases where we do need to block and wait until a ThreadPoolExecutor has a thread available to work on a task. One reason could be an off heap storage that is being read and processed by a ThreadPoolExecutor: e.g. there is no need, and sometimes completely undesired, to use JVM heap for something that is already available off heap.

Another good use is described in “Creating a NotifyingBlockingThreadPoolExecutor“.

How To


The easiest way get lasync and try it is with Leiningen:

[lasync "0.1.1"]

Or maven from Clojars: https://clojars.org/lasync/versions

Or to see it “inside out”: github

Use It


To create a pool with limited number of threads and a backing q limit:

(ns sample.project
  (:use lasync))
 
(def pool (limit-pool))

That is pretty much it. The pool is a regular ExecutorService that can have tasks submitted to it:

(.submit pool #(+ 41 1))

By default lasync will create a number of threads and a blocking queue limit that matches the number of available cores:

(defonce available-cores 
  (.. Runtime getRuntime availableProcessors))

But this number can be changed by:

user=> (def pool (limit-pool :nthreads 42))
#'user/pool
user=> (def pool (limit-pool :limit 42))
#'user/pool
user=> (def pool (limit-pool :nthreads 42 :limit 42))
#'user/pool

Show Me


To see lasync in action we can enjoy a built in “Lasync Show”:

lein repl
 
user=> (use 'lasync.show)
user=> (rock-on 69)  ;; Woodstock'69
INFO: pool q-size: 4, submitted: 1
INFO: pool q-size: 4, submitted: 3
INFO: pool q-size: 4, submitted: 2
INFO: pool q-size: 4, submitted: 0
INFO: pool q-size: 4, submitted: 4
INFO: pool q-size: 4, submitted: 5
INFO: pool q-size: 4, submitted: 6
INFO: pool q-size: 4, submitted: 7
...
...
INFO: pool q-size: 4, submitted: 62
INFO: pool q-size: 3, submitted: 60
INFO: pool q-size: 4, submitted: 63
INFO: pool q-size: 3, submitted: 65
INFO: pool q-size: 3, submitted: 64
INFO: pool q-size: 2, submitted: 66
INFO: pool q-size: 1, submitted: 67
INFO: pool q-size: 0, submitted: 68

Here lasync show was rocking on 4 core box (which it picked up on), so regardless of how many tasks are being pushed to it, the queue max size always stays at 4, and lasync creates that back pressure in case the task q limit is reached. In fact the “blocking” can be seen in action, as each task is sleeping for a second, so the whole thing can be visually seen being processed by 4, pause, next 4, pause, etc..

Here is the code behind the show


21
Oct 13

Datomic: Your Call Will Be Answered In The Order It Was Received

The Star Family


Mother Sun likes to have its planets close by at all times. Some closer than others, but that’s how life goes: someone grows up and becomes a star, others take their places next to that someone.

This narrative is about such a family, a Solar System family, where planets live at a certain distance from the Sun. The schema is simple, “solar/planet” with a “solar/distance”:

(def schema
  [{:db/id #db/id[:db.part/db]
    :db/ident :solar/planet
    :db/valueType :db.type/string
    :db/cardinality :db.cardinality/one
    :db.install/_attribute :db.part/db}
   {:db/id #db/id[:db.part/db]
    :db/ident :solar/distance
    :db/valueType :db.type/long
    :db/cardinality :db.cardinality/one
    :db.install/_attribute :db.part/db}])

Here is the data from almighty wikipedia:

(def data
  [{:db/id #db/id[:db.part/user]
    :solar/planet "Mercury"
    :solar/distance 57909175}
   {:db/id #db/id[:db.part/user]
    :solar/planet "Venus"
    :solar/distance 108208930}
   {:db/id #db/id[:db.part/user]
    :solar/planet "Earth"
    :solar/distance 149597890}
   {:db/id #db/id[:db.part/user]
    :solar/planet "Mars"
    :solar/distance 227936640}
   {:db/id #db/id[:db.part/user]
    :solar/planet "Jupiter"
    :solar/distance 778412010}
   {:db/id #db/id[:db.part/user]
    :solar/planet "Saturn"
    :solar/distance 1426725400}
   {:db/id #db/id[:db.part/user]
    :solar/planet "Uranus"
    :solar/distance 2870972200}
   {:db/id #db/id[:db.part/user]
    :solar/planet "Neptune"
    :solar/distance 4498252900}])

Creating a schema and importing the data:

(d/transact *conn* schema)
(d/transact *conn* data)

Surprise!


Great, so now we have all that knowledge in Datomic. Let’s check it out:

(d/q '[:find ?p ?d :in $ 
       :where [?e :solar/planet ?p]
              [?e :solar/distance ?d]] (db *conn*))
 
#{["Venus" 108208930] ["Earth" 149597890] ["Saturn" 1426725400] ["Uranus" 2870972200] 
  ["Jupiter" 778412010] ["Mercury" 57909175] ["Neptune" 4498252900] ["Mars" 227936640]}

Looks right, but.. out of order? Yea, that is strange, since we “imported” the data in a vector, e.g. with an order in mind. Let’s focus on the planets themselves:

(d/q '[:find ?p :in $ 
       :where [?e :solar/planet ?p]] (db *conn*))
 
#{["Saturn"] ["Venus"] ["Jupiter"] ["Mercury"] ["Earth"] ["Mars"] ["Neptune"] ["Uranus"]}

Again out of order, this time in a “different” out of order.

Popping The Hood


One thing to notice above is that the result, that gets returned from a query, is a set, and a set has no (specific) order. So given the result and its type, Datomic did not do anything wrong, it just returned a set of planets: exactly what we asked for.

However, since all the facts were asserted in order, Datomic must have remembered them in order, right? Well let’s check. Every fact that gets asserted, gets assigned an entity id. Hence instead of looking at planet names, let’s look at corresponding entity ids:

(d/q '[:find ?e :in $
       :where [?e :solar/planet ?p]] (db *conn*))
 
#{[17592186045418] [17592186045420] [17592186045419] [17592186045422] [17592186045421] 
  [17592186045424] [17592186045423] [17592186045425]}

Better. Now we see that Datomic in fact has entity ids that we can easily sort:

(d/q '[:find (sort ?e) :in $ 
       :where [?e :solar/planet ?p]] (db *conn*))
 
[[(17592186045418 17592186045419 17592186045420 17592186045421 17592186045422 17592186045423 
   17592186045424 17592186045425)]]

And even convert these ids back to planet names, it’s all data after all:

(->> (d/q '[:find (sort ?e) :in $ 
            :where [?e :solar/planet ?p]] (db *conn*))
     ffirst
     (map (comp :solar/planet #(d/entity (db *conn*) %))))
 
("Mercury" "Venus" "Earth" "Mars" "Jupiter" "Saturn" "Uranus" "Neptune")

Very nice. But can we do better? Yes we can.

Now I Know The Trick


The problem with the solution above, it does two lookups: first to get the entity id, second to lookup data for this entity id. But we can do better. The query to get an entity id already “works with” a planet name, and “knows” about it. So why not use both of them right away:

(d/q '[:find ?p ?e :in $ 
       :where [?e :solar/planet ?p]] (db *conn*))
 
#{["Mars" 17592186045421] ["Saturn" 17592186045423] ["Neptune" 17592186045425] 
  ["Uranus" 17592186045424] ["Earth" 17592186045420] ["Mercury" 17592186045418] 
  ["Venus" 17592186045419] ["Jupiter" 17592186045422]}

Same query, just a little more data back. And Clojure loves data, now its trivial to get them in order with just Clojure:

(->> (d/q '[:find ?p ?e :in $ 
           :where [?e :solar/planet ?p]] (db *conn*))
     (sort-by second)
     (map first))
 
("Mercury" "Venus" "Earth" "Mars" "Jupiter" "Saturn" "Uranus" "Neptune")

That’s more like it. Of course we can use our knowledge about the data, and sort planets by the distance:

(->> (d/q '[:find ?p ?d :in $ 
            :where [?e :solar/planet ?p]
                   [?e :solar/distance ?d]] (db *conn*))
     (sort-by second)
     (map first))
 
("Mercury" "Venus" "Earth" "Mars" "Jupiter" "Saturn" "Uranus" "Neptune")

Not all data comes with such a direct ranking (as distance) of course, but whatever comes in Datomic’s way is definitely processed in the order it was received.

Sent from Earth


15
Jul 13

ClojureScript: Use Any JavaScript Library

Since ClojureScript relies on Google Closure compiler to “get down” to JavaScript, in order to take advantage of an “advanced” compilation, external JavaScript libraries have to follow certain Google Closure standards.

A Google Closure compiler introduces the concept of the “extern”: a symbol that is defined in code external to the code processed by the compiler. This is needed to exclude certain JS vars and functions that do not follow the standard that the g-closure advanced compilation relies on.

Many JS libraries do not follow g-closure standards, and there is a closure-compiler repository with some pre-built externs for JQuery, Jasmine, AngularJS and others. However there are about X thousand more JS libraries that could be useful while writing apps with ClojureScript.

While there is a way to manually go through all the ClojureScript code, find “external” JS vars/functions and write externs for them, there is a much nicer alternative written by Chris Houser in a gist: “Externs for ClojureScript” that creates a “DummyExternClass” and attaches all the vars and functions that are not part of (not recognized by) “core.cljs”.

Here is an example of creating externs for an arbitrary ClojureScript file that uses a nice chap timeline JS library:

user=> (print (externs-for-cljs ".../cljs/timeline.cljs"))
var document={};
var links.Timeline={};
var links.events={};
var DummyExternClass={};
DummyExternClass.toString=function(){};
DummyExternClass.substring=function(){};
DummyExternClass.getVisibleChartRange=function(){};
DummyExternClass.getTime=function(){};
DummyExternClass.start=function(){};
DummyExternClass.end=function(){};
DummyExternClass.getSelection=function(){};
DummyExternClass.row=function(){};
DummyExternClass.setSelection=function(){};
DummyExternClass.setCustomTime=function(){};
DummyExternClass.setVisibleChartToDate=function(){};
DummyExternClass.getElementById=function(){};
DummyExternClass.addListener=function(){};
DummyExternClass.draw=function(){};

The original file itself is not important, the output is. “externs-for-cljs” treated a couple of namespaced functions as vars, but it is a easy fix:

 
var links={};
links.Timeline=function(){};
links.events=function(){};

At this point the whole output can be saved as “timeline-externs.js”, and pointed to by “lein-cljsbuild”:

span style="color: #0086b3;"> :cljsbuild
   {:builds
    [{:source-paths [...],
      :compiler
      {:source-map ...,
       :output-to ...,
       :externs ["resources/public/js/externs/timeline-externs.js"]
       :optimizations :advanced}}]}

ClojureScript files based on other JS libraries that are not in a closure compiler repo: e.g. Twitter Bootstrap, Raphael and others can be “extern”ed the same way in order to take advantage of g-closure advanced compilation.

Interesting bit here that is not related to externs, but is to an advanced compilation is a “:source-map” attribute which is a way to map a combined/minified file back to an unbuilt state. It generates a source map which holds information about original JS files. When you query a certain line and column number in the (advanced) generated JavaScript you can do a lookup in the source map which returns the original location. Very handy to debug “:advanced” compiled ClojureScript.

For more info:


19
Jun 13

Clojure: Down to Nanos

Here is what needs to happen: there is a URN that is a part of an HTTP request. It needs to be parsed/split on the last “:”. The right part would be the key, and the left part would be a value (we’ll call it “id” in this case). Here is an example:

user=> (def urn "company:org:account:347-68F3726A84C")

After parsing we should get a neat map:

{:by "company:org:account", :id "347-68F3726A84C"}

While it feels more readable to start “regex”ing the problem:

user=> (require '[clojure.string :as cstr])
 
user=> (def re-colon (re-pattern #":"))
user=> (cstr/split "company:org:account:347-68F3726A84C" re-colon)
 
["company" "org" "account" "347-68F3726A84C"]

Just splitting on a simple single character regex (above) takes almost a microsecond (i.e. in this case about 2242 CPU cycles):

user=> (bench (cstr/split "company:org:account:347-68F3726A84C" re-colon))
 
       Execution time mean : 830.235720 ns

In general it is always best to use language “builtins”, so we’d turn to Java’s own lastIndexOf:

(defn parse-urn-id [urn]
  (let [last-colon (.lastIndexOf urn ":")]
    {:by (subs urn 0 last-colon)
     :id (subs urn (+ last-colon 1))}))

Putting “validation” outside for a moment, this actually does what is needed:

=> (parse-urn-id urn)
{:by "company:org:account", :id "347-68F3726A84C"}
user=> (bench (parse-urn-id urn))
 
       Execution time mean : 5.588747 µs

Wow.. builtins seem to fail us. How come?

A culprit is not “lastIndexOf”, but a way Clojure resolves an “untyped” “urn”. Anything that is defined with “def” is kept inside a Clojure “Var” that uses reflection and is not amenable to HotSpot optimizations. An interesting read on what actually happens: “Why Clojure doesn’t need invokedynamic, but it might be nice”.

While, in most cases, parsing a String for 6 microseconds is a perfectly fine expectation, there is a simple hint that can make it run 60 times faster. It’s a hint.. It’s a type hint:

(defn parse-urn-id [^String urn]
  (let [last-colon (.lastIndexOf urn ":")]
    {:by (subs urn 0 last-colon)
     :id (subs urn (+ last-colon 1))}))
user=> (bench (parse-urn-id urn))
 
       Execution time mean : 83.409471 ns

By hinting a “urn” type to be a “^String”, this function is now 67 times faster.

Achieve a warm and fuzzy feeling...   [Done]

31
May 13

Datomic: Can Simple be also Fast?

“An ounce of performance is worth pounds of promises”
© Mae West

Speed for the sake of Speed


Benchmarks, performance, speed comparisons, metrics, apples to apples, apples to nuclear weapons.. We, software developers “for real”, know that all that is irrelevant. What relevant is a clear problem definition, flexible data model, simple tool/way to solve it, a feeling of accomplishment, approved billing papers, moving along closer to the stars..

All is true, premature optimization is the root of all evil, readability over pointer arithmetic, performance does not really matter,… until it does. Until a problem definition itself is numbers over time i.e. ..ions per second.

It is not only HFT that defines capabilities of trading companies in their ability to cope with speed of light and picoseconds. Having big data and real time online processing coming out of basements and garages and finally hitting the brains of suits who suddenly “get it” and have money ready for it, makes a new wave of “performance problems” that are “just that”: little bit of business behind the problem, and mostly raw things per second.

Never Trust Sheep

© Ryan Stiles

Interesting thing about choosing the right database for a problem today is the fact that there are just so many available, and many scream that they can do everything for you, from storing data to taking your shirts to dry cleaning on Wednesdays if you buy a dozen of their enterprise licensees. One thing I learned is “to be quick and efficient we have to mute screamers and assholes”, so some fruit and fragile NoSQL boys and Oracle are out.

Datomic is kind of a new kid on a block. Although the development started about 3 years ago, and it was done by Relevance and Rich Hickey, so it is definitely ready for an enterprise ride. To put in into perspective: if MongoDB was ready for Foursquare as soon as MongoDb learned to “async fsync”, then given the creds, Datomic is ready for NASA.

Speed and Time


While usually all Datomic discussions involve “time” and rely on Cojure’s core principles of “Epochal Time Model”, this novel introduces another main character: “Speed”.

Datomic processes write transactions by sending them to a transactor via queue, which is currently HornetQ. Hornet claims to be able to do millions a second with SpecJms2007.

Before transaction is off to a tx queue it needs to be created though. It usually consist out of one or more queries. The documented, and recommended, way to create a query is a Datomic’s implementation of Datalog. It is a nice composable way to talk to the data.

While writes are great, and HornetQ looks quite promising, the fact that Datomic is ACID, and all the writes are coordinated by a transactor, Datomic is not (at least not yet) a system that would be a good fit for things like clickstream data. It does not mean writes are slow, it just means that it is not for 1% of problems that need “clickstream” like writes.

Reads are another story, one of the kickers in Datomic is having access to the database as a value. While “as a value” part sounds like a foreign term for a database, it provides crazy benefits: immutability, time, …, and among all others it provides a database value inside the application server that runs queries on it. A closest analogy is a git repository where you talk to the git repo locally, hence “locality of references”, hence caching, hence fast reads.

Peeking into The Universe


It is always good to start from the beginning, so why not start directly from the source: The Universe. Humans naively separated The Universe into galaxies, where a single galaxy has many planets. So here is our data model, many galaxies and many planets:

(def schema [
  {:db/id #db/id[:db.part/db]
   :db/ident :universe/planet
   :db/valueType :db.type/string
   :db/cardinality :db.cardinality/many
   :db/index true
   :db.install/_attribute :db.part/db}
 
  {:db/id #db/id[:db.part/db]
   :db/ident :universe/galaxy
   :db/valueType :db.type/string
   :db/cardinality :db.cardinality/many
   :db/index true
   :db.install/_attribute :db.part/db} ])

Here is the data we are going to be looking for:

(def data [
  {:db/id #db/id[:db.part/user]
   :universe/galaxy "Pegasus"
   :universe/planet "M7G_677"} ])

And here is a Datalogy way to look for planets in Pegasus galaxy:

(d/q '[:find ?planet :in $ ?galaxy 
       :where [?e :universe/planet ?planet]
              [?e :universe/galaxy ?galaxy]] (db *conn*) "Pegasus")

Which returns an expected planet: #{[“M7G_677”]}

Secret of a Clause


Now let’s bench it. I am going to use criterium:

(bench 
  (d/q '[:find ?planet :in $ ?galaxy 
         :where [?e :universe/planet ?planet]
                [?e :universe/galaxy ?galaxy]] (db *conn*) "Pegasus"))
   Evaluation count : 384000 in 60 samples of 6400 calls.
Execution time mean : 169.482941 µs

170µs for a lookup.. not too shabby, but not blazing either.. Can we do better? Yes.

The way Datalog is implemented in Datomic, it takes less time, and needs to do less, if most specific query clauses are specified first. In the example above “[?e :universe/galaxy ?galaxy]” is the most specific, since the “?galaxy” is provided as “Pegasus”. Let’s use this knowledge and bench it again:

(bench 
  (d/q '[:find ?planet :in $ ?galaxy 
         :where [?e :universe/galaxy ?galaxy]
                [?e :universe/planet ?planet]] (db *conn*) "Pegasus"))
   Evaluation count : 384000 in 60 samples of 6400 calls.
Execution time mean : 158.893114 µs

The “clause trick” shaved off 10µs, which is pretty good. But can we do better? We can.

The Art of Low Level


Since I was a kid, I knew that Basic is great, but it is for kids, and Assembly is the real deal. While Datalog is not Basic, and it is really powerful and good for 95% of cases, there are limitations with how fast you can go. Again, most of the time, a 200µs lookup is more than enough, but sometimes it is not. At times like these we turn to Datomic Assembly: we turn directly to indices.

While in the universe of other DB engines and languages doing something low level requires reading 3 books and then paying a consultant to do it, in Clojuretomic land it is a simple function that is called datoms:

datoms
function
 
Usage: (datoms db index & components)
 
Raw access to the index data, by index. The index must be supplied,
and, optionally, one or more leading components of the index can be
supplied to narrow the result.
 
    :eavt and :aevt indexes will contain all datoms
    :avet contains datoms for attributes where :db/index = true.
    :vaet contains datoms for attributes of :db.type/ref
    :vaet is the reverse index

And it is not just simple, it also works. Let’s cook a generic lookup function that would lookup an attribute of an entity by another attribute of that same entity:

(defn lookup [?a _ a v] 
  (let [d (db *conn*)] 
    (map #(map :v (d/datoms d :eavt (:e %) ?a)) 
         (d/datoms d :avet a v))))

A couple of things:

First we look for an entity with an attribute “a” that has a value “v”. For that we’re peeking into the AVET index. In other words, we know “A” and “V” from “AVET”, we are looking for an “E”.

Then we map over all matches and get the values of an attribute in question: “?a”. This time we’d do that by peeking into “EAVT” index. In other words, we are looking for a value “V”, by “E” and “A” in “EAVT”.

Note that idiomatically, or should I say datomically, we should pass a database value into this “lookup” function, since it would enable lookups across time, and not just “the latest”.

Let’s bench it already:

(bench 
  (doall 
    (lookup :universe/planet :by :universe/galaxy "Pegasus")))
   Evaluation count : 11366580 in 60 samples of 189443 calls.
Execution time mean : 5.848209 µs

Yep, from 170µs to 6µs, not bad of a jump.

Theory of Relativity


All performance numbers are of course relative. Relative to the data, to the hardware, to the problem and other sequence of events. The above is done on “Mac Book Pro 2.8 GHz, 8GB, i7 2 cores” with a 64 bit build of JDK 1.7.0_21 and “datomic-free 0.8.3862”. Having Clojure love for concurrency I would expect Datomic performance (i.e. those 6µs) to improve even further on the real multicore server.

Another thing to note, above results are from a single Datomic instance. Since Datomic is easily horizontally scalable, by partitioning reads and having them go out against “many Datomics” (I am not using a “cluster” term here, since the database is a value and it is/can be collocated with readers) the performance will improve even further.

While most of the time I buy arguments on how useless benchmarks are, sometimes they really do help. And believe it or not, my journey from Datalog to Datomic indicies, with a strictly performance agenda, made it possible to apply Datomic to the real big money problem, beyond hello worlds, git gists and prototypes that die after the “initial commit”.